Achieving the 2050 Greenhouse Gas Reduction Goal

How Far Can We Reach with Energy Efficiency?

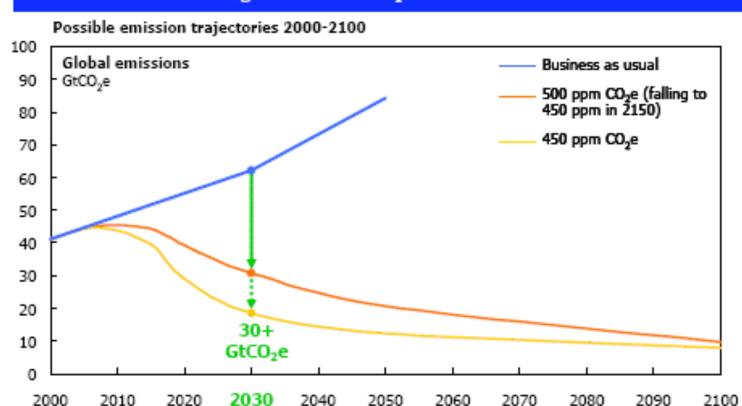
Arthur H. Rosenfeld, Commissioner
California Energy Commission
(916) 654-4930
ARosenfe@Energy.State.CA.US

http://www.energy.ca.gov/commission/commissioners/rosenfeld.

or just Google "Art Rosenfeld"

Introduction

- Focus will be on 2030 as my crystal ball is hazy after that
- Will the world find motivation to reduce CO2?
 - Hurricanes (more frequent, further North), Fall fires and droughts
- The UN or a "super-G8" must cooperate in this effort
 - With financial incentives for China, India, ... for "clean" coal.
- Cap and Trade systems will probably not be sufficient to keep levels at 450 ppm or below
- To modify behavior (e.g. land use, travel) switch to a Carbon Tax where you can tax "bads" to pay for "goods" (e.g. social security or medical insurance)
 - ~\$3/gallon of gasoline, ~\$300/ton of CO2, or ~20 cents/kWh
- "Free Trade" for lower carbon fuels. e.g
 - Elimination of \$0.50 per gallon on imported ethanol


Illuminating Space vs. the Street

To maintain 50/50 chance of staying below 2°C implies stabilizing <450ppm GtCO2e (at least 30 Gt reduction by 2030)

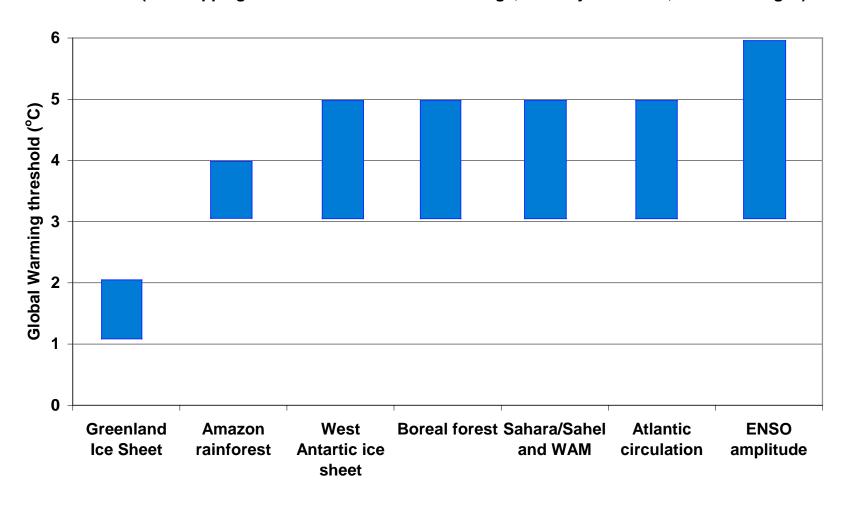
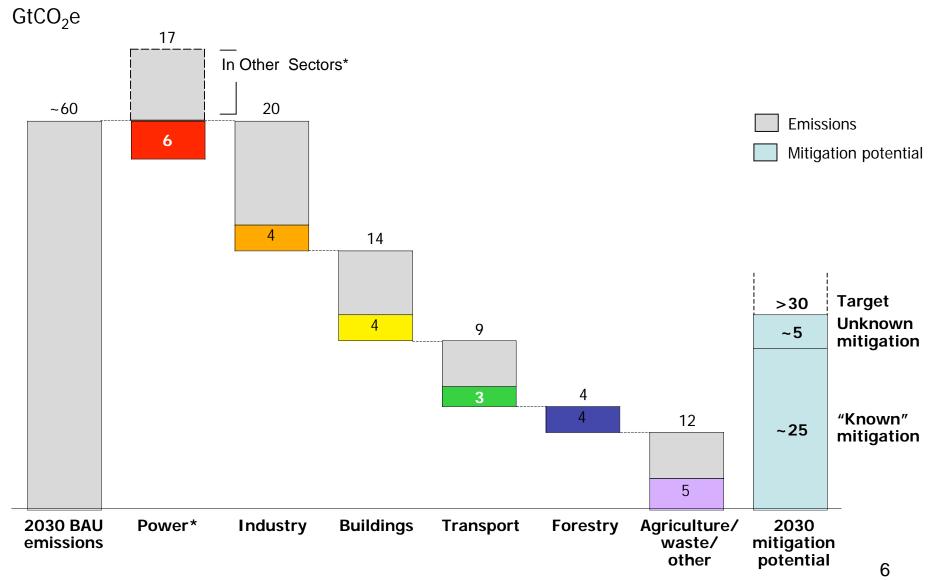

Possible emission trajectories 2000-2100 of global Emissions: from Hal Harvey, "Design to Win," California Environmental Associates, adapted from Stern Review

FIGURE 6: Stabilizing Emissions Requires a Minimum 30 Gt



Source: Adapted from Stern Review, 2006; BAU emissions ~WEO A2 scenario; 450 ppm budget range based on Stern and preliminary IPCC analysis

Tipping Element
(from Tipping Points of Gradual Climate Change, Timothy M. Lenton, U of East Anglia)

Available interventions in 6 sectors Worldwide could secure 5/6 of target based on *Design to Win*

^{*} Power sector emissions (but not mitigation potential) counted in industry and building sectors

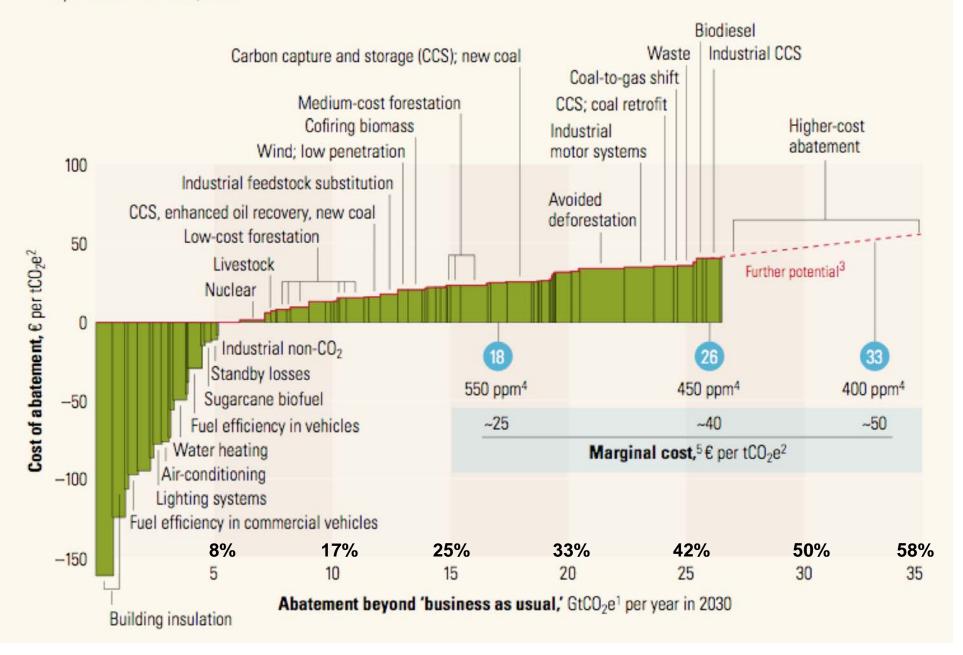
Conservation Supply Curves Explained

- Start with conservation supply curves for electricity, natural gas, gasoline, etc
- Annual benefit = yearly saved bills annualized cost of measure
- Then convert kWh or therms or gallons or ... to CO2 avoided
- Note that shaded areas are dollars saved or spent (depending if below or above the x-axis)

See NAS "Policy Implications of Greenhouse Warming" 1992, App. B

Policy Implications of Greenhouse Warming: Mitigation,
Adaptation, and the Science Base (1992) Committee on Science,
Engineering, and Public Policy (COSEPUP ...
books.nap.edu/books/0309043867/html

McKinsey Quarterly

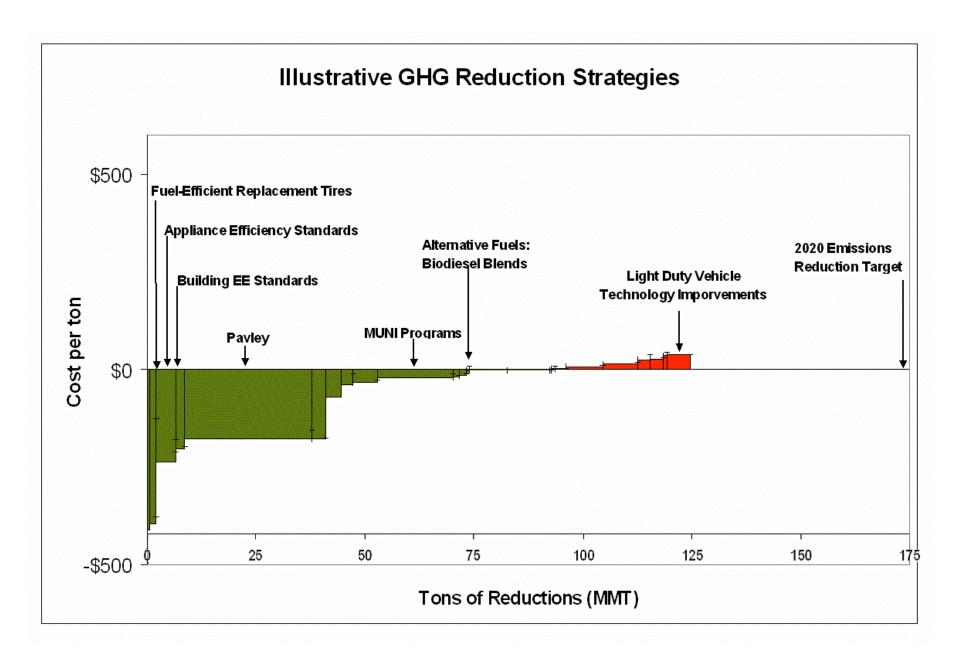

A cost curve for greenhouse gas reduction

A global study of the size and cost of measures to reduce greenhouse gas emissions yields important insights for businesses and policy makers.

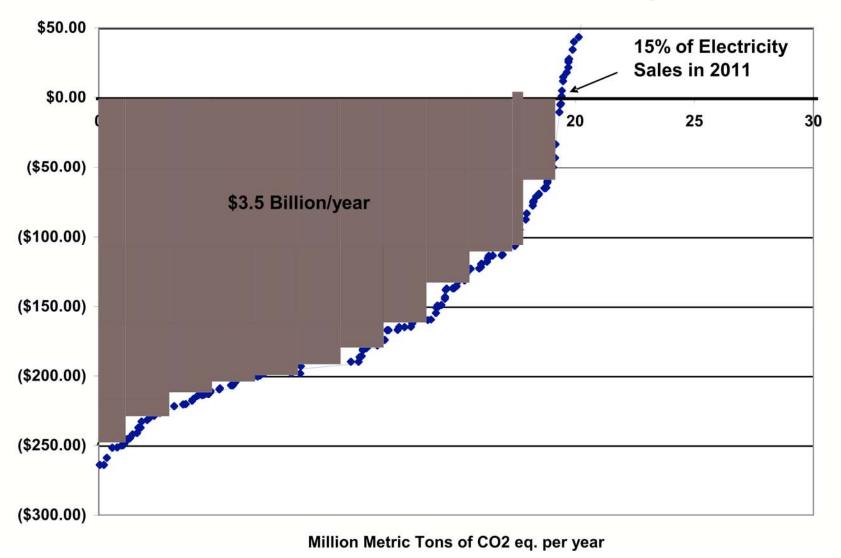
Per-Anders Enkvist, Tomas Nauclér, and Jerker Rosander

http://www.mckinseyquarterly.com/Energy_Resources_Materials/ A_cost_curve_for_greenhouse_gas_reduction_abstract Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

 Approximate abatement required beyond 'business as usual,' 2030



Turning to California


- AB 32 CO2 Goals:
 - 1990 levels by 2020
 - 80% below 1990 levels by 2050
- Where are we headed?

CALIFORNIA Population (million) growth rate (historic and projected)	1990 30	2000 34 1.3%	2010 39 1.4%	2020 44 1.2%	2030 49 1.1%	2040 54 1.0%	2050 60 0.9%
CO2 Business as Usual (MtCO2 eq.)	436	480	530	585	647	714	789
CO2 to Meet AB 32 Goals growth rate to Meet AB 32	436	480 1%	486 0.1%	436 -1%	320 -5.3%	204 -5.3%	87 -5.3%

Note: CO2 historic and projected data continue to change, consider these as estimates

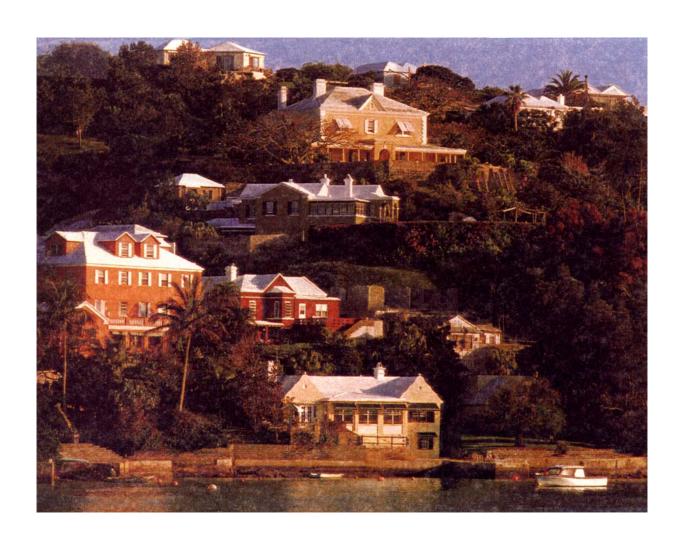
Supply Curve for CO2, Conserved thru Energy Efficiency in Electricity Sector in California - Potential in 2011 at 1 kwh = 0.454 kg of CO2

Cool Urban Surfaces and Global Warming

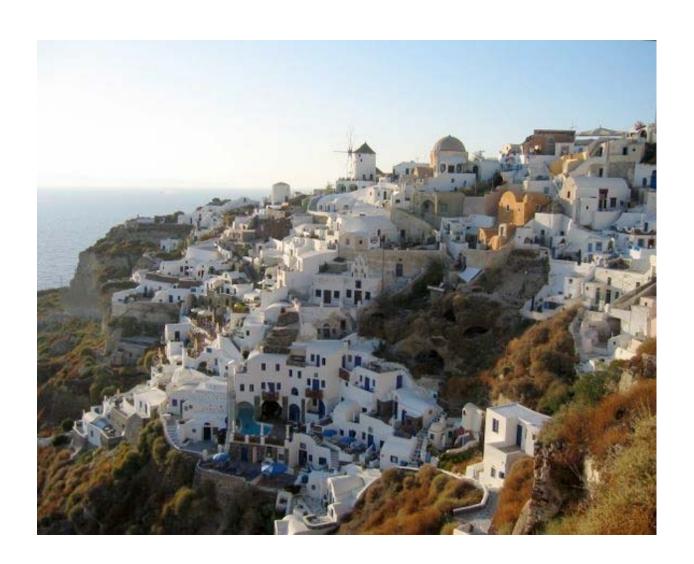
Hashem Akbari

Heat Island Group Lawrence Berkeley National Laboratory

> Tel: 510-486-4287 Email: H_Akbari@LBL.gov http:HeatIsland.LBL.gov


PALENC Conference, September 27, 2007; Crete, Greece

Acknowledgement


- Co-authors
 - Dr. Arthur H. Rosenfeld, Commissioner, California Energy Commission
 - Dr. Surabi Menon, Staff Scientist, Lawrence Berkeley National Laboratory

Research was funded by the Public Interest Energy Research (PIER) Program, California Energy Commission.

White is 'cool' in Bermuda

and in Santorini, Greece

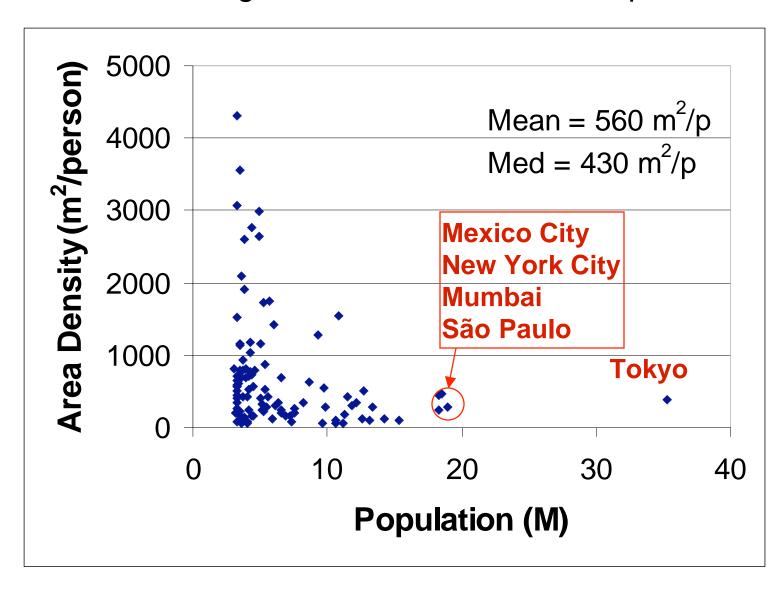
Cool Roof Technologies

<u>Old</u>

flat, white

pitched, white

New



pitched, cool & colored

Cool Surfaces also Cool the Globe

- Cool roof standards are designed to reduce a/c demand, save money, and save emissions. In Los Angeles they will eventually save ~\$100,000 per hour.
- But higher albedo surfaces (roofs and pavements) directly cool the world, quite independent of avoided CO₂. So we discuss the effect of cool surfaces for tropical, temperate cities.

100 Largest Cities have 670 M People

Radiative Forcing (RF) of 1 tCO2.

- Myhre et al. (1998), for well mixed CO2, quote
 RF [W/m²]= 5.35 In(1+ ΔC/C).
- Inserting $\Delta C = 1$ t CO2, we find RF(worldwide) ~ 1kW.
- so, enough white roof to reflect 1 kW (on average, night, day, adjusted for clouds) will offset 1 ton of CO2. "Enough" turns out to be 30 m2.

So each 200 m2 white roof offsets ~7 t CO2.

Dense Urban Areas are 1% of Land

- Area of the Earth = 508x10¹² m²
- Land Area (29%) = $147x10^{12} \text{ m}^2$ [3]
- Area of the 100 largest cities = 0.38x10¹² m² = 0.26% of Land Area for 670 M people
- Assuming 3B live in urban area, urban areas = [3000/670] x 0.26% = 1.2% of land
- But smaller cities have lower population density, hence, urban areas = 2% of land = $3x10^{12}$ m² [4]
- Dense, developed urban areas only 1% of land [5]

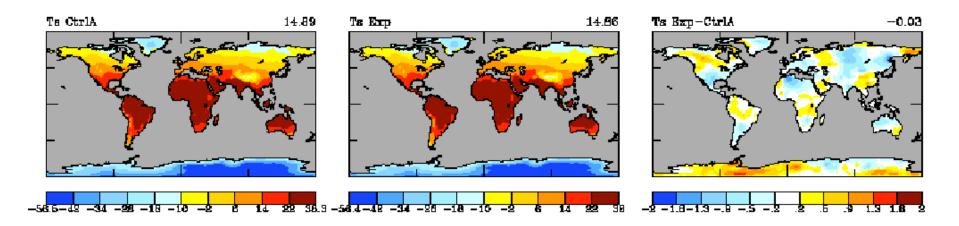
Potentials to Increase Urban Albedo is 0.1

- Typical urban area is 25% [6] roof and 35% [7] paved surfaces
- Roof albedo can increase by 0.25 for a net change of 0.25x0.25=0.063
- Paved surfaces albedo can increase by 0.15 for a net change of 0.35x0.15=0.052
- Net urban area albedo change at least 0.10

Effect of Increasing Urban Albedo by 0.1

- Roof area = $0.25 [6]*1.5x10^{12} m^2 [5] = 3.8x10^{11} m^2 [8]$
- Carbon reduction of cool roofs
 = 33 kg CO2/m² [1]* 3.8x10¹¹ m² [8] = 12 GT CO2 [9]
- Paved area = $0.35 [7]*1.5x10^{12} m^2 [5] = 5.3x10^{11} m^2 [10]$
- Carbon reduction of cool pavement
 = 20 kg CO2/m² [2]*3.8x10¹¹ m² [10] = 7.5 GT CO2 [11]
- Carbon reduction of cool roofs and cool pavements
 = 20 GT CO2
- 20 GT CO2 is half of the annual world emission of 40 GT CO2eq --- a reprieve of 6 mo with NO emissions.

Cooler cities as a mirror


- Mirror Area = $1.5x10^{12}$ m² [5] *(0.1/0.7)[δ albedo of cities/ δ albedo of mirror]
 - = 0.2x10¹² m² {This is equivalent to an square of 460 km on the side}

Equivalent Value of Avoided CO₂

- CO₂ currently trade at ~\$25/ton
- 20 GT worth \$500 billion, for changing albedo of roofs and paved surface
- Cooler roofs alone worth \$300B
- Cooler roofs also save air conditioning (and provide comfort) worth five times \$300B
- Let developed countries offer \$1 million per large city in a developing country, to trigger a cool roof/pavement program in that city

Effect of Increasing Urban Albedo by 0.1 on Global Temperature is -0.01K

- Using Harte's equations (Consider a Spherical Cow, pages 166, 174), the change in air temperature in lowest 1.8 km = 0.011K
- Using Hansen et al. (1997), the change in air temperature is = 0.016K (checks Harte's)

References

- Hansen et al. 1997: J Geophys Res, 102, D6(6831-6864)
- Myhre et al. 1998: Geophys Res Let, 25, 14(2715-2718)
- Harte 1988: Consider a Spherical Cow, pages 166, 174